We study the finite temperature localization transition in the spectrum of the overlap Dirac operator. Simulating the quenched approximation of QCD, we calculate the mobility edge, separating localized and delocalized modes in the spectrum. We do this at several temperatures just above the deconfining transition and by extrapolation we determine the temperature where the mobility edge vanishes and localized modes completely disappear from the spectrum. We find that this temperature, where even the lowest Dirac eigenmodes become delocalized, coincides with the critical temperature of the deconfining transition. This result, together with our previously obtained similar findings for staggered fermions shows that quark localization at the deconfining temperature is independent of the fermion discretization, suggesting that deconfinement and localization of the lowest Dirac eigenmodes are closely related phenomena.