Quantum Chaos in a Rydberg Atom System


الملخص بالإنكليزية

A recent proposal by Hallam et al. suggested using the chaotic properties of the semiclassical equations of motion, obtained by the time dependent variational principle (TDVP), as a characterization of quantum chaos. In this paper, we calculate the Lyapunov spectrum of the semiclassical theory approximating the quantum dynamics of a strongly interacting Rydberg atom array, which lead to periodic motion. In addition, we calculate the effect of quantum fluctuations around this approximation, and obtain the escape rate from the periodic orbit. We compare this rate to the rate extracted from the exact solution of the quantum theory, and find an order of magnitude discrepancy. We conclude that in this case, chaos in the TDVP equations does not correpond to phsyical properties of the system. Our result complement those of Ho et al. regarding the escape rate from the semiclassical periodic orbit.

تحميل البحث