High contact resistance is one of the primary concerns for electronic device applications of two-dimensional (2D) layered semiconductors. Here, we explore the enhanced carrier transport through metal-semiconductor interfaces in WS2 field effect transistors (FETs) by introducing a typical transition metal, Cu, with two different doping strategies: (i) a generalized Cu doping by using randomly distributed Cu atoms along the channel and (ii) a localized Cu doping by adapting an ultrathin Cu layer at the metal-semiconductor interface. Compared to the pristine WS2 FETs, both the generalized Cu atomic dopant and localized Cu contact decoration can provide a Schottky-to-Ohmic contact transition owing to the reduced contact resistances by 1 - 3 orders of magnitude, and consequently elevate electron mobilities by 5 - 7 times higher. Our work demonstrates that the introduction of transition metal can be an efficient and reliable technique to enhance the carrier transport and device performance in 2D TMD FETs.