Superconducting properties of high-entropy-alloy tellurides M-Te (M: Ag, In, Cd, Sn, Sb, Pb, Bi) with a NaCl-type structure


الملخص بالإنكليزية

High-entropy-alloy-type tellurides M-Te, which contain five different metals of M = Ag, In, Cd, Sn, Sb, Pb, and Bi, were synthesized using high pressure synthesis. Structural characterization revealed that all the obtained samples have a cubic NaCl-type structure. Six samples, namely AgCdSnSbPbTe5, AgInSnSbPbTe5, AgCdInSnSbTe5, AgCdSnPbBiTe5, AgCdInPbBiTe5, and AgCdInSnBiTe5 showed superconductivity. The highest transition temperature (Tc) among those samples was 1.4 K for AgInSnSbPbTe5. A sample of AgCdInSbPbTe5 showed a semiconductor-like transport behavior. From the relationship between Tc and lattice constant, it was found that a higher Tc is observed for a telluride with a larger lattice constant.

تحميل البحث