The method of neutron imaging was adopted to map the concentration evolution of aqueous paramagnetic Gd(NO3)3 solutions. Magnetic manipulation of the paramagnetic liquid within a miscible nonmagnetic liquid is possible by countering density-difference driven convection. The formation of salt fingers caused by double-diffusive convection in a liquid-liquid system of Gd(NO3)3 and Y(NO3)3 solutions can be prevented by the magnetic field gradient force.