Sum Rate Maximization for Reconfigurable Intelligent Surface Assisted Device-to-Device Communications


الملخص بالإنكليزية

In this letter, we propose to employ reconfigurable intelligent surfaces (RISs) for enhancing the D2D underlaying system performance. We study the joint power control, receive beamforming, and passive beamforming for RIS assisted D2D underlaying cellular communication systems, which is formulated as a sum rate maximization problem. To address this issue, we develop a block coordinate descent method where uplink power, receive beamformer and refection phase shifts are alternatively optimized. Then, we provide the closed-form solutions for both uplink power and receive beamformer. We further propose a quadratic transform based semi-definite relaxation algorithm to optimize the RIS phase shifts, where the original passive beamforming problem is translated into a separable quadratically constrained quadratic problem. Numerical results demonstrate that the proposed RIS assisted design significantly improves the sum-rate performance.

تحميل البحث