Recently observed spectrum of $P_c$ states exhibits a strong link to $Sigma_c bar{D}^{(*)}$ thresholds. In spite of successful molecular interpretations, we still push forward to wonder whether there exist finer structures. Utilizing the effecitve lagrangians respecting heavy quark symmetry and chiral symmetry, as well as instantaneous Bethe-Salpeter equations, we investigate the $Sigma_c bar{D}^{(*)}$ interactions and three $P_c$ states. We confirm that $P_c(4312)$ and $P_c(4440)$ are good candidates of $Sigma_c bar{D}$ and $Sigma_c bar{D}^{*}$ molecules with spin-$frac12$, respectively. Unlike other molecular calculations, our results indicate $P_c(4457)$ signal might be a mixture of spin-$frac32$ and spin-$frac12$ $Sigma_c bar{D}^{*}$ molecules, where the latter one appears to be an excitation of $P_c(4440)$. Therefore we conclude that, confronting three LHCb $P_c$ signals, there may exist not three, but four molecular states.