The Intriguing Parsec-Scale Radio Structure in the Offset AGN KISSR 102


الملخص بالإنكليزية

We report the detection of an intriguing parsec-scale radio source in the offset AGN candidate, KISSR 102. The elliptical host galaxy includes two optical nuclei at a projected separation of 1.54 kpc, N1 and N2, to the south-east and north-west, respectively. Phase-referenced VLBA observations at 1.5 and 4.9 GHz of this LINER galaxy, have detected double radio components (A and B) at a projected separation of 4.8 parsec at 1.5 GHz, and another partially-resolved double radio structure at 4.9 GHz coincident with the brighter radio component A. These radio detections are confined to the optical nucleus N1. The brightness temperatures of all the detected radio components are high, $gtrsim10^8$ K, consistent with them being components of a radio AGN. The 1.5-4.9 GHz spectral index is inverted ($alphasim+0.64pm0.08$) for component A and steep for component B ($alpha lesssim-1.6$). The dramatic change in the spectral indices of A and B is inconsistent with it being a typical core-jet structure from a single AGN or the mini-lobes of a compact symmetric object. To be consistent with a core-jet structure, the jet in KISSR 102 would need to be undergoing strong jet-medium interaction with dense surrounding media resulting in a drastic spectral steepening of the jet. Alternatively, the results could be consistent with the presence of a parsec-scale binary radio AGN, which is the end result of a three-body interaction involving three supermassive black holes in the centre of KISSR 102.

تحميل البحث