Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide


الملخص بالإنكليزية

Quantum systems combining indistinguishable photon generation and spin-based quantum information processing are essential for remote quantum applications and networking. However, identification of suitable systems in scalable platforms remains a challenge. Here, we investigate the silicon vacancy centre in silicon carbide and demonstrate controlled emission of indistinguishable and distinguishable photons via coherent spin manipulation. Using strong off-resonant excitation and collecting photons from the ultra-stable zero-phonon line optical transitions, we show a two-photon interference contrast close to 90% in Hong-Ou-Mandel type experiments. Further, we exploit the systems intimate spin-photon relation to spin-control the colour and indistinguishability of consecutively emitted photons. Our results provide a deep insight into the systems spin-phonon-photon physics and underline the potential of the industrially compatible silicon carbide platform for measurement-based entanglement distribution and photonic cluster state generation. Additional coupling to quantum registers based on recently demonstrated coupled individual nuclear spins would further allow for high-level network-relevant quantum information processing, such as error correction and entanglement purification.

تحميل البحث