One-dimensional Discrete Dirac Operators in a Decaying Random Potential I: Spectrum and Dynamics


الملخص بالإنكليزية

We study the spectrum and dynamics of a one-dimensional discrete Dirac operator in a random potential obtained by damping an i.i.d. environment with an envelope of type $n^{-alpha}$ for $alpha>0$. We recover all the spectral regimes previously obtained for the analogue Anderson model in a random decaying potential, namely: absolutely continuous spectrum in the super-critical region $alpha>frac12$; a transition from pure point to singular continuous spectrum in the critical region $alpha=frac12$; and pure point spectrum in the sub-critical region $alpha<frac12$. From the dynamical point of view, delocalization in the super-critical region follows from the RAGE theorem. In the critical region, we exhibit a simple argument based on lower bounds on eigenfunctions showing that no dynamical localization can occur even in the presence of point spectrum. Finally, we show dynamical localization in the sub-critical region by means of the fractional moments method and provide control on the eigenfunctions.

تحميل البحث