A novel experimental setup for an oblique impact onto an inclined granular layer


الملخص بالإنكليزية

We develop an original apparatus of the granular impact experiment by which the incident angle of the solid projectile and inclination angle of the target granular layer can be systematically varied. Whereas most of the natural cratering events occur on inclined surfaces with various incident angles, there have not been any experiments on oblique impacts on an inclined target surface. To perform systematic impact experiments, a novel experimental apparatus has to be developed. Therefore, we build an apparatus for impact experiments where both the incident angle and the inclination angle can be independently varied. The projectile-injection unit accelerates a plastic ball (6~mm in diameter) up to $v_isimeq 100$~m~s$^{-1}$ impact velocity. The barrel of the injection unit is made with a three-dimensional printer. The impact dynamics is captured by high-speed cameras to directly measure the impact velocity and incident angle. The rebound dynamics of the projectile (restitution coefficient and rebound angle) is also measured. The final crater shapes are measured using a line-laser profiler mounted on the electric stages. By scanning the surface using this system, a three-dimensional crater shape (height map) can be constructed. From the measured result, we can define and measure the characteristic quantities of the crater. The analyzed result on the restitution dynamics is presented as an example of systematic experiments using the developed system.

تحميل البحث