On the existence of supporting broken book decompositions for contact forms in dimension 3


الملخص بالإنكليزية

We prove that in dimension 3 every nondegenerate contact form is carried by a broken book decomposition. As an application we get that if M is a closed irreducible oriented 3-manifold that is not a graph manifold, for example a hyperbolic manifold, then every nondegenerate Reeb vector field on M has positive topological entropy. Moreover, we obtain that on a closed 3-manifold, every nondegenerate Reeb vector field has either two or infinitely many periodic orbits, and two periodic orbits are possible only on the sphere or on a lens space.

تحميل البحث