UAV-Enabled Confidential Data Collection in Wireless Networks


الملخص بالإنكليزية

This work, for the first time, considers confidential data collection in the context of unmanned aerial vehicle (UAV) wireless networks, where the scheduled ground sensor node (SN) intends to transmit confidential information to the UAV without being intercepted by other unscheduled ground SNs. Specifically, a full-duplex (FD) UAV collects data from each scheduled SN on the ground and generates artificial noise (AN) to prevent the scheduled SNs confidential information from being wiretapped by other unscheduled SNs. We first derive the reliability outage probability (ROP) and secrecy outage probability (SOP) of a considered fixed-rate transmission, based on which we formulate an optimization problem that maximizes the minimum average secrecy rate (ASR) subject to some specific constraints. We then transform the formulated optimization problem into a convex problem with the aid of first-order restrictive approximation technique and penalty method. The resultant problem is a generalized nonlinear convex programming (GNCP) and solving it directly still leads to a high complexity, which motivates us to further approximate this problem as a second-order cone program (SOCP) in order to reduce the computational complexity. Finally, we develop an iteration procedure based on penalty successive convex approximation (P-SCA) algorithm to pursue the solution to the formulated optimization problem. Our examination shows that the developed joint design achieves a significant performance gain compared to a benchmark scheme.

تحميل البحث