Microtoroidal resonators enhance long-distance dynamical entanglement generation in chiral quantum networks


الملخص بالإنكليزية

Chiral quantum networks provide a promising route for realising quantum information processing and quantum communication. Here, we describe how two distant quantum nodes of chiral quantum network become dynamically entangled by a photon transfer through a common 1D chiral waveguide. We harness the directional asymmetry in chirally-coupled single-mode ring resonators to generate entangled state between two atoms. We report a concurrence of up to 0.969, a huge improvement over the 0.736 which was suggested and analyzed in great detail in Ref. [1]. This significant enhancement is achieved by introducing microtoroidal resonators which serve as efficient photonic interface between light and matter. Robustness of our protocol to experimental imperfections such as fluctuations in inter-nodal distance, imperfect chirality, various detunings and atomic spontaneous decay is demonstrated. Our proposal can be utilised for long-distance entanglement generation in quantum networks which is a key ingredient for many applications in quantum computing and quantum information processing.

تحميل البحث