We determine the distribution of cosmic string loops directly from simulations, rather than determining the loop production function and inferring the loop distribution from that. For a wide range of loop lengths, the results agree well with a power law exponent -2.5 in the radiation era and -2 in the matter era, the universal result for any loop production function that does not diverge at small scales. Our results extend those of Ringeval, Sakellariadou, and Bouchet: we are able to run for 15 times longer in conformal time and simulate a volume 300-2400 times larger. At the times they reached, our simulation is in general agreement with the more negative exponents they found, -2.6 and -2.4. However, our simulations show that this was a transient regime; at later times the exponents decline to the values above. This provides further evidence against models with a rapid divergence of the loop density at small scales, such as ``model 3 used to analyze LIGO data and predict LISA sensitivity.