We describe the phase diagram of electrons on a fully connected lattice with random hopping, subject to a random Heisenberg spin exchange interactions between any pair of sites and a constraint of no double occupancy. A perturbative renormalization group analysis yields a critical point with fractionalized excitations at a non-zero critical value $p_c$ of the hole doping $p$ away from the half-filled insulator. We compute the renormalization group to two loops, but some exponents are obtained to all loop order. We argue that the critical point $p_c$ is flanked by confining phases: a disordered Fermi liquid with carrier density $1+p$ for $p>p_c$, and a metallic spin glass with carrier density $p$ for $p<p_c$. Additional evidence for the critical behavior is obtained from a large $M$ analysis of a model which extends the SU(2) spin symmetry to SU($M$). We discuss the relationship of the vicinity of this deconfined quantum critical point to key aspects of cuprate phenomenology.