Towards a Robust Classifier: An MDL-Based Method for Generating Adversarial Examples


الملخص بالإنكليزية

We address the problem of adversarial examples in machine learning where an adversary tries to misguide a classifier by making functionality-preserving modifications to original samples. We assume a black-box scenario where the adversary has access to only the feature set, and the final hard-decision output of the classifier. We propose a method to generate adversarial examples using the minimum description length (MDL) principle. Our final aim is to improve the robustness of the classifier by considering generated examples in rebuilding the classifier. We evaluate our method for the application of static malware detection in portable executable (PE) files. We consider API calls of PE files as their distinguishing features where the feature vector is a binary vector representing the presence-absence of API calls. In our method, we first create a dataset of benign samples by querying the target classifier. We next construct a code table of frequent patterns for the compression of this dataset using the MDL principle. We finally generate an adversarial example corresponding to a malware sample by selecting and adding a pattern from the benign code table to the malware sample. The selected pattern is the one that minimizes the length of the compressed adversarial example given the code table. This modification preserves the functionalities of the original malware sample as all original API calls are kept, and only some new API calls are added. Considering a neural network, we show that the evasion rate is 78.24 percent for adversarial examples compared to 8.16 percent for original malware samples. This shows the effectiveness of our method in generating examples that need to be considered in rebuilding the classifier.

تحميل البحث