Prediction and optimization of NaV1.7 inhibitors based on machine learning methods


الملخص بالإنكليزية

We used machine learning methods to predict NaV1.7 inhibitors and found the model RF-CDK that performed best on the imbalanced dataset. Using the RF-CDK model for screening drugs, we got effective compounds K1. We use the cell patch clamp method to verify K1. However, because the model evaluation method in this article is not comprehensive enough, there is still a lot of research work to be performed, such as comparison with other existing methods. The target protein has multiple active sites and requires our further research. We need more detailed models to consider this biological process and compare it with the current results, which is an error in this article. So we want to withdraw this article.

تحميل البحث