Cantor sets are constructed from iteratively removing sections of intervals. This process yields a cumulative distribution function (CDF), constructed from the invariant measure associated with their iterated function systems. Under appropriate assumptions, we identify sampling schemes of such CDFs, meaning that the underlying Cantor set can be reconstructed from sufficiently many samples of its CDF. To this end, we prove that two Cantor sets have almost-nowhere (with respect to their respective invariant measures) intersection.