Improved Surrogate Modeling using Machine Learning for Industrial Civil Aircraft Aerodynamics


الملخص بالإنكليزية

Predicting and simulating aerodynamic fields for civil aircraft over wide flight envelopes represent a real challenge mainly due to significant numerical costs and complex flows. Surrogate models and reduced-order models help to estimate aerodynamic fields from a few well-selected simulations. However, their accuracy dramatically decreases when different physical regimes are involved. Therefore, a method of local non-intrusive reduced-order models using machine learning, called Local Decomposition Method, has been developed to mitigate this issue. This paper introduces several enhancements to this method and presents a complex application to an industrial-like three-dimensional aircraft configuration over a full flight envelope. The enhancements of the method cover several aspects: choosing the best number of models, estimating apriori errors, improving the adaptive sampling for parallel issues, and better handling the borders between local models. The application is supported by an analysis of the model behavior, with a focus on the machine learning methods and the local properties. The model achieves strong levels of accuracy, in particular with two sub-models: one for the subsonic regime and one for the transonic regime. These results highlight that local models and machine learning represent very promising solutions to deal with surrogate models for aerodynamics.

تحميل البحث