Linear complementary dual (LCD) codes and linear complementary pair (LCP) of codes over finite fields have been intensively studied recently due to their applications in cryptography, in the context of side-channel and fault injection attacks. The security parameter for an LCP of codes $(C,D)$ is defined as the minimum of the minimum distances $d(C)$ and $d(D^bot)$. It has been recently shown that if $C$ and $D$ are both 2-sided group codes over a finite field, then $C$ and $D^bot$ are permutation equivalent. Hence the security parameter for an LCP of 2-sided group codes $(C,D)$ is simply $d(C)$. We extend this result to 2-sided group codes over finite chain rings.