Fusion Category Symmetry I: Anomaly In-Flow and Gapped Phases


الملخص بالإنكليزية

We study generalized discrete symmetries of quantum field theories in 1+1D generated by topological defect lines with no inverse. In particular, we describe t Hooft anomalies and classify gapped phases stabilized by these symmetries, including new 1+1D topological phases. The algebra of these operators is not a group but rather is described by their fusion ring and crossing relations, captured algebraically as a fusion category. Such data defines a Turaev-Viro/Levin-Wen model in 2+1D, while a 1+1D system with this fusion category acting as a global symmetry defines a boundary condition. This is akin to gauging a discrete global symmetry at the boundary of Dijkgraaf-Witten theory. We describe how to ungauge the fusion category symmetry in these boundary conditions and separate the symmetry-preserving phases from the symmetry-breaking ones. For Tambara-Yamagami categories and their generalizations, which are associated with Kramers-Wannier-like self-dualities under orbifolding, we develop gauge theoretic techniques which simplify the analysis. We include some examples of CFTs with fusion category symmetry derived from Kramers-Wannier-like dualities as an appetizer for the Part II companion paper.

تحميل البحث