While quantum dots are at the forefront of quantum device technology, tuning multi-dot systems requires a lengthy experimental process as multiple parameters need to be accurately controlled. This process becomes increasingly time-consuming and difficult to perform manually as the devices become more complex and the number of tuning parameters grows. In this work, we present a crucial step towards automated tuning of quantum dot qubits. We introduce an algorithm driven by machine learning that uses a small number of coarse-grained measurements as its input and tunes the quantum dot system into a pre-selected charge state. We train and test our algorithm on a GaAs double quantum dot device and we consistently arrive at the desired state or its immediate neighborhood.