Explicit form of the effective evolution equation for the randomly forced Schr{o}dinger equation with quadratic nonlinearity


الملخص بالإنكليزية

An effective equation describes a weakly nonlinear wave field evolution governed by nonlinear dispersive PDEs emph{via} the set of its resonances in an arbitrary big but finite domain in the Fourier space. We consider the Schr{o}dinger equation with quadratic nonlinearity including small external random forcing/dissipation. An effective equation is deduced explicitly for each case of monomial quadratic nonlinearities $ u^2, , bar{u}u, , bar{u}^2$ and the sets of resonance clusters are studied. In particular, we demonstrate that the nonlinearity $bar{u}^2$ generates no 3-wave resonances and its effective equation is degenerate while in two other cases the sets of resonances are not empty. Possible implications for wave turbulence theory are briefly discussed.

تحميل البحث