Mapping Skyrmion Stability in Uniaxial Lacunar Spinel Magnets from First-Principles


الملخص بالإنكليزية

The identification of general principles for stabilizing magnetic skyrmion phases in bulk materials over wide ranges of temperatures is a prerequisite to the development of skyrmion-based spintronic devices. Lacunar spinels with the formula GaM4X8 with M=V, Mo; X=S, Se are a convenient case study towards this goal as they are some of the first bulk systems suggested to host equilibrium chiral skyrmions far from the paramagnetic transition. We derive the magnetic phase diagrams likely to be observed in these materials, accounting for all possible magnetic interactions, and prove that skyrmion stability in the lacunar spinels is a general consequence of their crystal symmetry rather than the details of the material chemistry. Our results are consistent with all experimental reports in this space and demonstrate that the differences in the phase diagrams of particular spinel chemistries are determined by magnetocrystalline anisotropy, up to a normalization factor. We conclude that skyrmion formation over wide ranges of temperatures can be expected in all lacunar spinels, as well as in a wide range of uniaxial systems with low magnetocrystalline anisotropy.

تحميل البحث