In noisy environments such as the cell, many processes involve target sites that are often hidden or inactive, and thus not always available for reaction with diffusing entities. To understand reaction kinetics in these situations, we study the first hitting time statistics of a Brownian particle searching for a target site that switches stochastically between visible and hidden phases. At high crypticity, an unexpected rate limited power-law regime emerges for the first hitting time density, which markedly differs from the classic $t^{-3/2}$ scaling for steady targets. Our problem admits an asymptotic mapping onto a mixed, or Robin, boundary condition. Similar results are obtained with non-Markov targets and particles diffusing anomalously.