Double points of free projective line arrangements


الملخص بالإنكليزية

We prove Anzis and Tohaneanu conjecture, that is the Dirac-Motzkin conjecture for supersolvable line arrangements in the projective plane over an arbitrary field of characteristic zero. Moreover, we show that a divisionally free arrangements of lines contain at least one double point, that can be regarded as the Sylvester-Gallai theorem for some free arrangements. This is a corollary of a general result that if you add a line to a free projective line arrangement, then that line has to contain at least one double point. Also we prove some conjectures and one open problems related to supersolvable line arrangements and the number of double points.

تحميل البحث