First data from the CUPID-Mo neutrinoless double beta decay experiment


الملخص بالإنكليزية

The CUPID-Mo experiment is searching for neutrinoless double beta decay in $^{100}$Mo, evaluating the technology of cryogenic scintillating Li$_{2}^{100}$MoO$_4$ detectors for CUPID (CUORE Upgrade with Particle ID). CUPID-Mo detectors feature background suppression using a dual-readout scheme with Li$_{2}$MoO$_4$ crystals complemented by Ge bolometers for light detection. The detection of both heat and scintillation light signals allows the efficient discrimination of $alpha$ from $gamma$&$beta$ events. In this proceedings, we discuss results from the first 2 months of data taking in spring 2019. In addition to an excellent bolometric performance of 6.7$,$keV (FWHM) at 2615$,$keV and an $alpha$ separation of better than 99.9% for all detectors, we report on bulk radiopurity for Th and U. Finally, we interpret the accumulated physics data in terms of a limit of $T_{1/2}^{0 u},> 3times10^{23},$yr for $^{100}$Mo and discuss the sensitivity of CUPID-Mo until the expected end of physics data taking in early 2020.

تحميل البحث