Formation of dynamically transversely trapping surfaces and the stretched hoop conjecture


الملخص بالإنكليزية

A dynamically transversely trapping surface (DTTS) is a new concept of an extension of a photon sphere that appropriately represents a strong gravity region and has close analogy with a trapped surface. We study formation of a marginally DTTS in time-symmetric, conformally flat initial data with two black holes, with a spindle-shaped source, and with a ring-shaped source, and clarify that $mathcal{C}lesssim 6pi GM$ describes the condition for the DTTS formation well, where $mathcal{C}$ is the circumference and $M$ is the mass of the system. This indicates that an understanding analogous to the hoop conjecture for the horizon formation is possible. Exploring the ring system further, we find configurations where a marginally DTTS with the torus topology forms inside a marginally DTTS with the spherical topology, without being hidden by an apparent horizon. There also exist configurations where a marginally trapped surface with the torus topology forms inside a marginally trapped surface with the spherical topology, showing a further similarity between DTTSs and trapped surfaces.

تحميل البحث