We introduce a class of multi-particle Greenberger-Horne-Zeilinger (GHZ) states, and study entanglement swapping between two qubit systems for Bell states and for the class of GHZ states, respectively. We generalize the bi-system entanglement swapping of Bell states and multi-particle GHZ states to any number of qubit systems. We further study the entanglement swapping schemes between any number of Bell states and between any number of the introduced GHZ states in a detailed way, and propose the schemes that can generate two identical GHZ states. We illustrate the applications of such schemes in quantum information processing by proposing quantum protocols for quantum key distribution, quantum secret sharing and quantum private comparison.