Proximity-Induced Superconductivity in a Topological Crystalline Insulator


الملخص بالإنكليزية

Superconducting topological crystalline insulators (TCI) are predicted to host new topological phases protected by crystalline symmetries, but available materials are insufficiently suitable for surface studies. To induce superconductivity at the surface of a prototypical TCI SnTe, we use molecular beam epitaxy to grow a heterostructure of SnTe and a high-Tc superconductor Fe(Te,Se), utilizing a buffer layer to bridge the large lattice mismatch between SnTe and Fe(Te,Se). Using low-temperature scanning tunneling microscopy and spectroscopy, we measure a prominent spectral gap on the surface of SnTe, and demonstrate its superconducting origin by its dependence on temperature and magnetic field. Our work provides a new platform for atomic-scale investigations of emergent topological phenomena in superconducting TCIs.

تحميل البحث