A Microlensing Accretion Disk Size Measurement in the Lensed Quasar WFI 2026-4536


الملخص بالإنكليزية

We use thirteen seasons of R-band photometry from the 1.2m Leonard Euler Swiss Telescope at La Silla to examine microlensing variability in the quadruply-imaged lensed quasar WFI 2026-4536. The lightcurves exhibit ${sim},0.2,text{mag}$ of uncorrelated variability across all epochs and a prominent single feature of ${sim},0.1,text{mag}$ within a single season. We analyze this variability to constrain the size of the quasars accretion disk. Adopting a nominal inclination of 60$^text{o}$, we find an accretion disk scale radius of $log(r_s/text{cm}) = 15.74^{+0.34}_{-0.29}$ at a rest-frame wavelength of $2043,unicode{xC5}$, and we estimate a black hole mass of $log(M_{text{BH}}/M_{odot}) = 9.18^{+0.39}_{-0.34}$, based on the CIV line in VLT spectra. This size measurement is fully consistent with the Quasar Accretion Disk Size - Black Hole Mass relation, providing another system in which the accretion disk is larger than predicted by thin disk theory.

تحميل البحث