The Berry phase associated with energy bands in crystals can lead to quantized quantities, such as the quantization of electric dipole polarization in an insulator, known as a one-dimensional (1D) topological insulator (TI) phase. Recent theories have generalized such quantization from dipole to higher multipole moments, giving rise to the discovery of multipole TIs, which exhibit a cascade hierarchy of multipole topology at boundaries of boundaries: A quantized octupole moment in the three-dimensional (3D) bulk can induce quantized quadrupole moments on its two-dimensional (2D) surfaces, which then produce quantized dipole moments along 1D hinges. The model of 2D quadrupole TI has been realized in various classical structures, exhibiting zero-dimensional (0D) in-gap corner states. Here we report on the realization of a quantized octupole TI on the platform of a 3D acoustic metamaterial. By direct acoustic measurement, we observe 0D corner states, 1D hinge states, 2D surface states, and 3D bulk states, as a consequence of the topological hierarchy from octupole moment to quadrupole and dipole moment. The critical conditions of forming a nontrivial octupole moment are further demonstrated by comparing with another two samples possessing a trivial octupole moment. Our work thus establishes the multipole topology and its full cascade hierarchy in 3D geometries.