Synchronization overheads pose a major challenge as applications advance towards extreme scales. In current large-scale algorithms, synchronization as well as data communication delay the parallel computations at each time step in a time-dependent partial differential equation (PDE) solver. This creates a new scaling wall when moving towards exascale. We present a weakly-synchronous algorithm based on novel asynchrony-tolerant (AT) finite-difference schemes that relax synchronization at a mathematical level. We utilize remote memory access programming schemes that have been shown to provide significant speedup on modern supercomputers, to efficiently implement communications suitable for AT schemes, and compare to two-sided communications that are state-of-practice. We present results from simulations of Burgers equation as a model of multi-scale strongly non-linear dynamical systems. Our algorithm demonstrate excellent scalability of the new AT schemes for large-scale computing, with a speedup of up to $3.3$x in communication time and $2.19$x in total runtime. We expect that such schemes can form the basis for exascale PDE algorithms.