From VOAs to short star products in SCFT


الملخص بالإنكليزية

We build a bridge between two algebraic structures in SCFT: a VOA in the Schur sector of 4d $mathcal{N}=2$ theories and an associative algebra in the Higgs sector of 3d $mathcal{N}=4$. The natural setting is a 4d $mathcal{N}=2$ SCFT placed on $S^3times S^1$: by sending the radius of $S^1$ to zero, we recover the 3d $mathcal{N}=4$ theory, and the corresponding VOA on the torus degenerates to the associative algebra on the circle. We prove that: 1) the Higgs branch operators remain in the cohomology; 2) all the Schur operators of the non-Higgs type are lifted by line operators wrapped on the $S^1$; 3) no new cohomology classes are added. We show that the algebra in 3d is given by the quotient $mathcal{A}_H = {rm Zhu}_{s}(V)/N$, where ${rm Zhu}_{s}(V)$ is the non-commutative Zhu algebra of the VOA $V$ (for ${s}in{rm Aut}(V)$), and $N$ is a certain ideal. This ideal is the null space of the (${s}$-twisted) trace map $T_{s}: {rm Zhu}_{s}(V) to mathbb{C}$ determined by the torus 1-point function in the high temperature (or small complex structure) limit. It therefore equips $mathcal{A}_H$ with a non-degenerate (twisted) trace, leading to a short star-product according to the recent results of Etingof and Stryker. The map $T_{s}$ is easy to determine for unitary VOAs, but has a much subtler structure for non-unitary and non-$C_2$-cofinite VOAs of our interest. We comment on relation to the Beem-Rastelli conjecture on the Higgs branch and the associated variety. A companion paper will explore further details, examples, and some applications of these ideas.

تحميل البحث