We present a new dynamic matching sparsification scheme. From this scheme we derive a framework for dynamically rounding fractional matchings against emph{adaptive adversaries}. Plugging in known dynamic fractional matching algorithms into our framework, we obtain numerous randomized dynamic matching algorithms which work against adaptive adversaries (the first such algorithms, as all previous randomized algorithms for this problem assumed an emph{oblivious} adversary). In particular, for any constant $epsilon>0$, our framework yields $(2+epsilon)$-approximate algorithms with constant update time or polylog worst-case update time, as well as $(2-delta)$-approximate algorithms in bipartite graphs with arbitrarily-small polynomial update time, with all these algorithms guarantees holding against adaptive adversaries. All these results achieve emph{polynomially} better update time to approximation tradeoffs than previously known to be achievable against adaptive adversaries.