It is well known that measurements of H0 from gravitational lens time delays scale as H0~1-k_E where k_E is the mean convergence at the Einstein radius R_E but that all available lens data other than the delays provide no direct constraints on k_E. The properties of the radial mass distribution constrained by lens data are R_E and the dimensionless quantity x=R_E a(R_E)/(1-k_E)$ where a(R_E) is the second derivative of the deflection profile at R_E. Lens models with too few degrees of freedom, like power law models with densities ~r^(-n), have a one-to-one correspondence between x and k_E (for a power law model, x=2(n-2) and k_E=(3-n)/2=(2-x)/4). This means that highly constrained lens models with few parameters quickly lead to very precise but inaccurate estimates of k_E and hence H0. Based on experiments with a broad range of plausible dark matter halo models, it is unlikely that any current estimates of H0 from gravitational lens time delays are more accurate than ~10%, regardless of the reported precision.