A powerful control method in experimental quantum computing is the use of spin echoes, employed to select a desired term in the systems internal Hamiltonian, while refocusing others. Here we address a more general problem, describing a method to not only turn on and off particular interactions but also to rescale their strengths so that we can generate any desired effective internal Hamiltonian. We propose an algorithm based on linear programming for achieving time-optimal rescaling solutions in fully coupled systems of tens of qubits, which can be modified to obtain near time-optimal solutions for rescaling systems with hundreds of qubits.