A framework is presented for the factorization of high-energy hadronic processes in the presence of Lorentz and CPT violation. The comprehensive effective field theory describing Lorentz and CPT violation, the Standard-Model Extension, is used to demonstrate factorization of the hadronic tensor at leading order in electroweak interactions for deep inelastic scattering and for the Drell-Yan process. Effects controlled by both minimal and nonminimal coefficients for Lorentz violation are explored, and the equivalent parton-model description is derived. The methodology is illustrated by determining cross sections and studying estimated attainable sensitivities to Lorentz violation using real data collected at the Hadronen-Elektronen Ring Anlage and the Large Hadron Collider and simulated data for the future US-based electron-ion collider.