Entanglement Entropy of Annulus in Holographic Thermalization


الملخص بالإنكليزية

The thermalization process of the holographic entanglement entropy (HEE) of an annular domain is investigated over the Vaidya-AdS geometry. We numerically determine the Hubeny-Rangamani-Takayanagi (HRT) surface which may be a hemi-torus or two disks, depending on the ratio of the inner radius to the outer radius of the annulus. More importantly, for some fixed ratio of two radii, it undergoes a phase transition or double phase transitions from a hemi-torus configuration to a two-disk configuration, or vice versa, during the thermalization. The occurrence of various phase transitions is determined by the ratio of two radii of the annulus. The rate of entanglement growth is also investigated during the thermal quench. The local maximal rate of entanglement growth occurs in the region with double phase transitions. Finally, if the quench process is fairly slow which may be controlled by the thickness of null shell, the region with double phase transitions vanishes.

تحميل البحث