The effects of peculiar velocities in SN Ia environments on the local $H_0$ measurement


الملخص بالإنكليزية

The discrepancy between estimates of the Hubble Constant ($H_0$) measured from local ($z lesssim 0.1$) scales and from scales of the sound horizon is a crucial problem in modern cosmology. Peculiar velocities ($v_{pec}$) of standard candle distance indicators can systematically affect local $H_0$ measurements. We here use 2MRS galaxies to measure the local galaxy density field, finding a notable $z$ < 0.05 under-density in the SGC-6dFGS region of 27 $pm$ 2 %. However, no strong evidence for a Local Void pertaining to the full 2MRS sky coverage is found. Galaxy densities are used to measure a density parameter, $Delta phi_{+-}$, which we introduce as a proxy for $v_{pec}$ which quantifies density gradients along a SN line-of-sight. $Delta phi_{+-}$ is found to correlate with local $H_0$ estimates from 88 Pantheon SNeIa (0.02 < $z$ < 0.05). Density structures on scales of $sim$ 50 Mpc are found to correlate strongest with $H_0$ estimates in both the observational data and in mock data from the MDPL2-Galacticus simulation. Using trends of $H_0$ with $Delta phi_{+-}$, we can correct for the effects of density structure on local $H_0$ estimates, even in the presence of biased $v_{pec}$. However, the difference in the inferred $H_0$ estimate with and without the peculiar velocity correction is limited to < 0.1 %. We conclude that accounting for environmentally-induced peculiar velocities of SNIa host galaxies does not resolve the tension between local and CMB-derived $H_0$ estimates.

تحميل البحث