The mechanism of not diverging Gr{u}neisen parameter in the quantum critical heavy-fermion quasicrystal (QC) Yb$_{15}$Al$_{34}$Au$_{51}$ is analyzed. We construct the formalism for calculating the specific heat $C_V(T)$, the thermal-expansion coefficient $alpha(T)$, and the Gr{u}neisen parameter $Gamma(T)$ near the quantum critical point of the Yb valence transition. By applying the framework to the QC, we calculate $C_V(T)$, $alpha(T)$, and $Gamma(T)$, which explains the measurements. Not diverging $Gamma(T)$ is attributed to the robustness of the quantum criticality in the QC under pressure. The difference in $Gamma(T)$ at the lowest temperature between the QC and approximant crystal is shown to reflect the difference in the volume derivative of characteristic energy scales of the critical Yb-valence fluctuation and the Kondo temperature. Possible implications of our theory to future experiments are also discussed.