Optimizing neural network techniques in classifying Fermi-LAT gamma-ray sources


الملخص بالإنكليزية

Machine learning is an automatic technique that is revolutionizing scientific research, with innovative applications and wide use in astrophysics. The aim of this study was to developed an optimized version of an Artificial Neural Network machine learning method for classifying blazar candidates of uncertain type detected by the Fermi Large Area Telescope (LAT) gamma-ray instrument. The initial study used information from gamma-ray light curves present in the LAT 4-year Source Catalog. In this study we used additionally gamma-ray spectra and multiwavelength data, and certain statistical methods in order to improve classification. The final result of this study increased the classification performance by about 80 per cent with respect to previous method, leaving only 15 unclassified blazars instead of 77 out of total 573 in the LAT catalog. Other blazars were classified into BL Lacs and FSRQ in ratio of about two to one, similar to previous study. In both studies a precision value of 90 per cent was used as a threshold for classification.

تحميل البحث