Coupling hBN quantum emitters to 1D photonic crystal cavities


الملخص بالإنكليزية

Quantum photonics technologies require a scalable approach for integration of non-classical light sources with photonic resonators to achieve strong light confinement and enhancement of quantum light emission. Point defects from hexagonal Boron Nitride (hBN) are amongst the front runners for single photon sources due to their ultra bright emission, however, coupling of hBN defects to photonic crystal cavities has so far remained elusive. Here we demonstrate on-chip integration of hBN quantum emitters with photonic crystal cavities from silicon nitride (Si3N4) and achieve experimentally measured Q-factor of 3,300 for hBN/Si3N4 hybrid cavities. We observed 9-fold photoluminescence enhancement of a hBN single photon emission at room temperature. Our work paves the way towards hybrid integrated quantum photonics with hBN, and outlines an excellent path for further development of cavity quantum electrodynamic experiments and on-chip integration of 2D materials.

تحميل البحث