The first complete and explicit SO(1,9) Lorentz descriptions of all component fields contained in $mathcal{N} = 1$, $mathcal{N} = 2$A, and $mathcal{N} = 2$B unconstrained scalar 10D superfields are presented. These are made possible by the discovery of the relation of the superfield component expansion as a consequence of the branching rules of irreducible representations in one ordinary Lie algebra into one of its Lie subalgebras. Adinkra graphs for ten dimensional superspaces are defined for the first time, whose nodes depict spin bundle representations of SO(1,9). An analog of Breitenlohners approach is implemented to scan for superfields that contain graviton(s) and gravitino(s), which are the candidates for the prepotential superfields of 10D off-shell supergravity theories and separately abelian Yang-Mills theories are similarly treated. Version three contains additional content, both historical and conceptual, which broaden the reach of the scan in the 10D Yang-Mills case.