Laboratory formation and photo-chemistry of fullerene/anthracene cluster cations


الملخص بالإنكليزية

Besides buckminsterfullerene (C60), other fullerenes and their derivatives may also reside in space. In this work, we study the formation and photo-dissociation processes of astronomically relevant fullerene/anthracene (C14H10) cluster cations in the gas phase. Experiments are carried out using a quadrupole ion trap (QIT) in combination with time-of-flight (TOF) mass spectrometry. The results show that fullerene (C60, and C70)/anthracene (i.e., [(C14H10)nC60]+ and [(C14H10)nC70]+), fullerene (C56 and C58)/anthracene (i.e., [(C14H10)nC56]+ and [(C14H10)nC58]+) and fullerene (C66 and C68)/anthracene (i.e., [(C14H10)nC66]+ and [(C14H10)nC68]+) cluster cations, are formed in the gas phase through an ion-molecule reaction pathway. With irradiation, all the fullerene/anthracene cluster cations dissociate into mono$-$anthracene and fullerene species without dehydrogenation. The structure of newly formed fullerene/anthracene cluster cations and the bonding energy for these reaction pathways are investigated with quantum chemistry calculations. Our results provide a growth route towards large fullerene derivatives in a bottom-up process and insight in their photo-evolution behavior in the ISM, and clearly, when conditions are favorable, fullerene/PAH clusters can form efficiently. In addition, these clusters (from 80 to 154 atoms or ~ 2 nm in size) offer a good model for understanding the physical-chemical processes involved in the formation and evolution of carbon dust grains in space, and provide candidates of interest for the DIBs that could motivate spectroscopic studies.

تحميل البحث