Low-degree mixed modes in red giant stars with moderate core magnetic fields


الملخص بالإنكليزية

Observations of pressure-gravity mixed modes, combined with a theoretical framework for understanding mode formation, can yield a wealth of information about deep stellar interiors. In this paper, we seek to develop a formalism for treating the effects of deeply buried core magnetic fields on mixed modes in evolved stars, where the fields are moderate, i.e. not strong enough to disrupt wave propagation, but where they may be too strong for non-degenerate first-order perturbation theory to be applied. The magnetic field is incorporated in a way that avoids having to use this. Inclusion of the Lorentz force term is shown to yield a system of differential equations that allows for the magnetically-affected eigenfunctions to be computed from scratch, rather than following the approach of first-order perturbation theory. For sufficiently weak fields, coupling between different spherical harmonics can be neglected, allowing for reduction to a second-order system of ordinary differential equations akin to the usual oscillation equations that can be solved analogously. We derive expressions for (i) the mixed-mode quantisation condition in the presence of a field and (ii) the frequency shift associated with the magnetic field. In addition, for modes of low degree we uncover an extra offset term in the quantisation condition that is sensitive to properties of the evanescent zone. These expressions may be inverted to extract information about the stellar structure and magnetic field from observational data.

تحميل البحث