On Predictive Information in RNNs


الملخص بالإنكليزية

Certain biological neurons demonstrate a remarkable capability to optimally compress the history of sensory inputs while being maximally informative about the future. In this work, we investigate if the same can be said of artificial neurons in recurrent neural networks (RNNs) trained with maximum likelihood. Empirically, we find that RNNs are suboptimal in the information plane. Instead of optimally compressing past information, they extract additional information that is not relevant for predicting the future. We show that constraining past information by injecting noise into the hidden state can improve RNNs in several ways: optimality in the predictive information plane, sample quality, heldout likelihood, and downstream classification performance.

تحميل البحث