Moire superlattices are emerging as a new route for engineering strongly correlated electronic states in two-dimensional van der Waals heterostructures, as recently demonstrated in the correlated insulating and superconducting states in magic-angle twisted bilayer graphene and ABC trilayer graphene/boron nitride moire superlattices. Transition metal dichalcogenide (TMDC) moire heterostructures provide another exciting model system to explore correlated quantum phenomena, with the addition of strong light-matter interactions and large spin-orbital coupling. Here we report the optical detection of strongly correlated phases in semiconducting WSe2/WS2 moire superlattices. Our sensitive optical detection technique reveals a Mott insulator state at one hole per superlattice site ({ u} = 1), and surprising insulating phases at fractional filling factors { u} = 1/3 and 2/3, which we assign to generalized Wigner crystallization on an underlying lattice. Furthermore, the unique spin-valley optical selection rules of TMDC heterostructures allow us to optically create and investigate low-energy spin excited states in the Mott insulator. We reveal an especially slow spin relaxation lifetime of many microseconds in the Mott insulating state, orders-of-magnitude longer than that of charge excitations. Our studies highlight novel correlated physics that can emerge in moire superlattices beyond graphene.