Re-entrant melting of sodium, magnesium, and aluminum: General trend


الملخص بالإنكليزية

Re-entrant melting (in which a substances melting point starts to decrease beyond a certain pressure) is believed to be an unusual phenomenon. Among the elements, it has so far only been observed in a very limited number of species, e.g., the alkali metals. Our density functional theory calculations reveal that this behavior actually extends beyond alkali metals to include magnesium, which also undergoes re-entrant melting, though at the much higher pressure of ~300 GPa. We find that the origin of re-entrant melting is the faster softening of interatomic interactions in the liquid phase than in the solid, as pressure rises. We propose a simple approach to estimate pressure-volume relations and show that this characteristic softening pattern is widely observed in metallic elements. We verify this prediction in the case of aluminum by finding re-entrant melting at ~4000 GPa. These results suggest that re-entrant melting may be a more universal feature than previously thought.

تحميل البحث